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Abstract

This communication is concerned with the large amplitude free vibration of a mass grounded by linear and nonlinear

springs in series. Based on a single equation of motion in terms of relative displacement variable, a qualitative analysis is

completed and some new and interesting dynamic behaviors are discovered. These behaviors include oscillations in

asymmetric single potential wells and existence of asymptotes in phase plane for the case of softening springs. The ranges

of oscillations are determined and expressions of exact periods for symmetric and asymmetric oscillations are established.

Furthermore, the construction of analytical approximations to period and periodic solution is briefly described.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

A mechanical system having a mass grounded by two linear springs in series or parallel may be replaced
with their equivalents [1,2]. When one of the springs in parallel is linear while the other is nonlinear, it results
in an equivalent, nonlinear spring with a larger coefficient for its linear part. On the other hand, if a linear
spring is connected with a nonlinear one serially, derivation of an equivalent spring becomes complicated.
A single complex nonlinear equation of motion in terms of relative displacement was obtained in Ref. [3], but
no qualitative analysis about the equation was presented and no expression of exact period was given. By
applying the Lindstedt–Poincaré (LP) method and the classical harmonic balance (HB) method [4,5] to this
equation, respectively, Telli and Kopmaz [3] established analytical approximate periodic solution for the case
of hardening spring. It has been observed [3] that, for fixed e ¼ 0.5, numerical and analytical approximate
solutions found for both methods are in very good agreement when v0p1 and 0.1pxp10, where e is the ratio
of the coefficient in nonlinear portion to that in the linear portion in relationship between the deflection of
spring and the force acting upon it for the nonlinear spring, v0 is the initial deflection of nonlinear spring and x
is the ratio of coefficient of linear portion of the nonlinear spring to that of the linear spring. It has been
pointed out that these analytical solutions, especially the LP solutions, have large difference from the
numerical solution when v041 [3]. This can be explained as follows. The LP method applies to weakly
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nonlinear systems only; for their HB solutions with two- and three-term approximations, the coefficients A3

and A5 are obtained under the assumptions that A35A1 and A55A1. In addition, the case of softening springs
has not been considered in their paper.

Recently, Lai and Lim [6] applied the linearized harmonic balance (LHB) method [7] to the equation of
motion derived in Ref. [3], and obtained three analytical approximations to the periodic solutions. However, it
is very difficult to construct higher-order analytical approximations by using the LHB method [7], because it
requires analytical solution of complicated nonlinear algebraic equation in terms of unknown frequencies.
Though analytical approximate solutions to the symmetric oscillations are constructed in Ref. [6], no
restriction is imposed to the oscillation amplitude for the case of softening spring, and especially, no
qualitative analysis for the dynamic system was carried out there. In fact, some interesting dynamic behaviors
for the case of softening spring have not been discovered. In addition, no expression of exact period for
symmetric oscillations is provided in Ref. [6].

In this communication, both cases of hardening and softening springs are considered. Based on a qualitative
analysis, some new and interesting dynamic behaviors are opened out. These behaviors include the oscillations
in the asymmetric single potential well and existence of asymptotes in phase plane for the case of softening
springs. The ranges of oscillations are determined and expressions of exact periods for symmetric and
asymmetric oscillations are obtained. Finally, a brief description of the construction of analytical approximate
periods and periodic solutions is given.

2. Qualitative analysis

Consider a mechanical system shown in Fig. 1, which has a mass m grounded by linear and nonlinear
springs in series [3]. In this figure, the stiffness coefficient of the first linear spring is k1, the coefficients
associated with the linear and nonlinear portions of spring force in the second spring with cubic nonlinear
characteristic are described by k2 and k3, respectively. Let e be defined as

� ¼ k3=k2. (1)

The case of k340 corresponds to a hardening spring while k3o0 indicates a softening one.
Let x and y denote the absolute displacements of the connection point of two spring, and the mass m,

respectively. By introducing two new variables

u ¼ y� x; r ¼ x. (2)

Telli and Kopmaz [3] obtained the following governing equation for u and r:

ð1þ 3�Zu2Þu00 þ 6�Zuu0
2
þ o2

0ðuþ �u
3Þ ¼ 0, (3)

r ¼ x ¼ xð1þ �u2Þu; y ¼ ð1þ xþ x�u2Þu, (4)

where a prime denotes differentiation with respect to time t and

x ¼ k2=k1; Z ¼
x

1þ x
; o2

0 ¼
k2

mð1þ xÞ
.

Eq. (3) is an ordinary differential equation in u. In the present study, it is assumed that x0(0) ¼ y0(0) ¼ 0
then u0(0) ¼ 0. For Eq. (3), we consider the following initial conditions:

uð0Þ ¼ A; u0ð0Þ ¼ 0. (5)
k1 k2, k3

y

m

x

Fig. 1. System with linear and nonlinear springs in series.



ARTICLE IN PRESS
W.P. Sun, B.S. Wu / Journal of Sound and Vibration 314 (2008) 474–480476
Apparently, once u in Eqs. (3) and (5) is solved, variables x and y can be achieved by using Eq. (4). Hence,
we will study Eqs. (3) and (5) only.

Premultiplying Eq. (3) with (1+3eZu2), integrating the resulting equation, and using initial condition in
Eq. (5) yields the following equation:

ð1þ 3�Zu2Þ
2u0

2
þ V ðuÞ ¼ V ðAÞ, (6a)

where

V ðuÞ ¼ o2
0½u

2 þ �u4ð1þ 3ZÞ=2þ �2Zu6�. (6b)

The function V(u) has singular points at ui, where

dV ðuiÞ

du
¼ 2o2

0 ui þ �ð1þ 3ZÞu3
i þ 3�2Zu5

i

� �
¼ 0

or

u1 ¼ 0 if �40,

u1 ¼ 0; u2;3 ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
�1=�

p
; u4;5 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=ð3�ZÞ

p
if �o0. (6c)

Note that the singular points u4, u5 of V(u) are not ‘‘truly’’ singular points of Eq. (3) since u ¼ u4,5 do not
satisfy this equation, and in fact, they are added roots resulted from integrating Eq. (3).

The nature of the singular points can be determined by examining d2V(ui)/du2. It follows from Eqs. (6a–c)
that there are four cases to be considered: e40; eo0, Zo1/3; eo0, Z ¼ 1/3 and eo0, Z41/3. These are
discussed individually.

When the nonlinear spring is a hardening one i.e.,e40, V(u) has one singular point only, a minimum at
u ¼ 0. Thus u ¼ 0 is a center. The possible motions in the neighborhood of this point are represented in Fig. 2.

When eo0 and Zo1/3, V(u) arrives its minimum value at u1, and maximum values at u2 and u3; hence u1 is a
center, u2, u3 are saddle points. The possible motions are represented in Fig. 3. Note that u ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=ð3�ZÞ

p
are

two asymptotes.
As Z increases, two saddle points and two asymptotes approach each other, respectively. They coalesce at

u ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
�1=�

p
when Z ¼ 1/3. Hence, for the case of Z ¼ 1/3, this system has a minimum at u ¼ 0 only, and it is

a center. The possible motions are represented in Fig. 4.
Finally when eo0 and Z41/3, V(u) arrives its minimum values at u1, u2 and u3, respectively; hence u1, u2 and

u3 are centers. The possible motions are represented in Fig. 5.
Based on the qualitative analysis above for Eq. (3), the periodic motion of this system depends upon the initial

oscillation amplitude A and values of the parameters e and Z. In the case of e40, the system will oscillate
v

c u

Fig. 2. Phase plane for e40.
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Fig. 3. Phase plane for �o0; Zo1=3.

v

asymptote
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Fig. 4. Phase plane for �o0; Z ¼ 1=3.

v

asymptote

separatrix

uc1 c2 c3

Fig. 5. Phase plane for �o0; Z41=3.
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between the symmetric bounds [�A,A] and 0oAo+N. For the case of eo0 and Zp1/3, oscillation occurs
around stable equilibrium point u ¼ 0 only, which is symmetric about this point and oscillation amplitude
should satisfy Ao

ffiffiffiffiffiffiffiffiffiffiffi
�1=�

p
. For the case of eo0 and Z41/3, oscillation may occur around stable equilibrium

point u ¼ 0 and is symmetric about this point, and oscillation amplitude A is subjected to Ao
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=ð3�ZÞ

p
;

oscillation may also occur around equilibrium point u ¼
ffiffiffiffiffiffiffiffiffiffiffi
�1=�

p
ðu ¼ �

ffiffiffiffiffiffiffiffiffiffiffi
�1=�

p
Þ and is asymmetric about it,

and left (right) oscillation amplitude should satisfy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=ð3�ZÞ

p
oAo

ffiffiffiffiffiffiffiffiffiffiffi
�1=�

p
ð�

ffiffiffiffiffiffiffiffiffiffiffi
�1=�

p
oAo�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=ð3�ZÞ

p
Þ:

The ranges of oscillations are then determined for various cases.
3. Expression of exact periods and construction of analytical approximate solutions

3.1. Oscillations for e40 or eo0,Zp1/3,Ao
ffiffiffiffiffiffiffiffiffiffiffi
�1=�

p
or eo0, Z41/3, Ao

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=ð3�ZÞ

p
Oscillations for the case of e40 or eo0, Zp1/3, Ao

ffiffiffiffiffiffiffiffiffiffiffi
�1=�

p
or eo0, Z41/3, Ao

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=ð3�ZÞ

p
are first

considered, which occur between symmetric limits [�A,A]. Based on Eqs. (6a, b), the exact period for such an
oscillation can be expressed as follows:

TeðAÞ ¼ 4

Z p=2

0

1þ 3�ZA2sin2 j

o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �A2ð1þ 3ZÞð1þ sin2 jÞ=2þ �2ZA4ð1þ sin2 jþ sin4 jÞ

q dj. (7)

The exact period is an implicit function of oscillation amplitude and related parameters. Similarly, the
corresponding periodic solution is also an implicit function. Such an implicit solution is not convenient for
use. While analytical approximations can supply explicit expressions of the solution and allow the direct
discussion of the influence of oscillation amplitude and related parameters on the solution.

Both of LHB method [7] and NHB method [8] can be used to establish the analytical approximate periods
and corresponding periodic solutions. The accurate results obtained by LHB [7] have been reported for the
case above by Lai and Lim [6], so results of the Newton-harmonic balance method [8] are not shown here.
Note that the LHB method [7] results in a complex nonlinear algebraic equation in terms of unknown
frequency and its analytical solution is difficult. The NHB method [8] is established by successfully linearizing
the governing equation and, subsequently, appropriately imposing the HB method in order to obtain linear
algebraic equations instead of nonlinear algebraic equations. In this communication, the construction of
analytical approximate solutions will be based on the NHB method [8].
3.2. Oscillations for eo0, Z41/3,
ffiffiffiffiffiffiffiffiffiffiffi
�1=�

p
oAo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 9ZÞ=6�Z

p
In the case of eo0, Z41/3,

ffiffiffiffiffiffiffiffiffiffiffi
�1=�

p
oAo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 9ZÞ=ð6�ZÞ

p
, the oscillation occurs around stable equilibrium

points u ¼
ffiffiffiffiffiffiffiffiffiffiffi
�1=�

p
, and is asymmetric about it. Hence, we introduce a new variable

w ¼ u�
ffiffiffiffiffiffiffiffiffiffiffi
�1=�

p
. (8)

Substituting Eq. (8) into Eqs. (3) and (5) yields

P1ðwÞw
00 þ P2ðwÞw

02 þ P3ðwÞ ¼ 0; wð0Þ ¼ Â; w0ð0Þ ¼ 0, (9a)

where

P1ðwÞ ¼ 1� 3Z� 6
ffiffiffiffiffiffi
��
p

Zwþ 3�Zw2; P2ðwÞ ¼ 6�Zw� 6
ffiffiffiffiffiffi
��
p

Z,

P3ðwÞ ¼ o2
0 �w

3 � 2w� 3
ffiffiffiffiffiffi
��
p

w2
� �

; Â ¼ A�
ffiffiffiffiffiffiffiffiffiffiffi
�1=�

p
. (9b)

The system in Eqs. (9a, b) will oscillate between the asymmetric bounds ½�B̂; Â�, and B̂ðB̂40Þ is equal to
B̂ ¼

ffiffiffiffiffiffiffiffiffiffiffi
�1=�

p
� BðB40Þ and B satisfies

V ðAÞ ¼ V ðBÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=ð3�ZÞ

p
oBo

ffiffiffiffiffiffiffiffiffiffiffi
�1=�

p� �
, (10)
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where V(u) is given in Eq. (6b). Using Eq. (10), we can obtain B̂ðB̂40Þ in terms of Â as follows:

B̂ ¼

ffiffiffiffiffiffiffi
�1

�

r
þ

1

2�
ffiffiffi
Z
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð1þ 3ZÞ � 2�2Z

ffiffiffiffiffiffiffi
�
1

�

r
þ Â

 !2

� �
ffiffiffiffi
D
p

vuut , (11)

where

D ¼ ð1� 10Zþ 9Z2Þ � 4�Z

ffiffiffiffiffiffiffi
�
1

�

r
þ Â

 !2

1þ 3Zþ 3�Z

ffiffiffiffiffiffiffi
�
1

�

r
þ Â

 !2
2
4

3
5.

In a way similar to Refs. [9–11], we introduce the two new nonlinear oscillating systems which oscillate
between the symmetric bounds [�H, H]

C1ðw; aÞw00 þC2ðw; aÞw0
2
þC3ðw; aÞ ¼ 0; wð0Þ ¼ H; w0ð0Þ ¼ 0, (12a)

where

C1ðw; aÞ ¼
1� 3Z� 6a

ffiffiffiffiffiffi
��
p

Zwþ 3�Zw2 if wX0;

1� 3Zþ 6a
ffiffiffiffiffiffi
��
p

Zwþ 3�Zw2 if wo0;

(

C2ðw; aÞ ¼
6�Zw� 6a

ffiffiffiffiffiffi
��
p

Z if wX0;

6�Zwþ 6a
ffiffiffiffiffiffi
��
p

Z if wo0;

(

C3ðw; aÞ ¼
o2

0ð�w
3 � 2w� 3a

ffiffiffiffiffiffi
��
p

w2Þ if wX0;

o2
0 �w

3 � 2wþ 3a
ffiffiffiffiffiffi
��
p

w2
� �

if wo0

(
(12b)

and a ¼71. Here we set H ¼ Â for a ¼ 1, and H ¼ B̂ for a ¼ �1, respectively.
Following the method adopted in Refs. [10,11], we may construct the corresponding analytical approximate

periods and periodic solutions to Eqs. (9a, b). To save space, the corresponding analytical approximation is
omitted.

By integrating Eqs. (12a, b), we get the exact period TeðÂÞ as follows:

TeðÂÞ ¼

Z p=2

0

2F 1ðÂÞ

o0

ffiffiffiffiffiffiffiffiffiffiffiffi
F2ðÂÞ

q dtþ

Z p=2

0

2F1ð�B̂Þ

o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2ð�B̂Þ

q dt, (13)

where

F 1ðzÞ � �1þ 3Zþ 6
ffiffiffiffiffiffi
��
p

Zz sin t� 3�Zz2 sin2 t,

F 2ðzÞ � ð6Z� 2Þ þ 2z
ffiffiffiffiffiffi
��
p
ð7Z� 1Þ

1þ sin tþ sin2 t

1þ sin t

	 

þ

1

2
�z2ð1� 27ZÞð1þ sin2 tÞ

� 6�
ffiffiffiffiffiffi
��
p

z3
1þ sin tþ sin2 tþ sin3 tþ sin4 t

1þ sin t

	 

þ �2Zz4ð1þ sin2 tþ sin4 tÞ.

Since the periodic motion around the equilibrium point u ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
�1=�

p
is similar to that around the

equilibrium point u ¼ þ
ffiffiffiffiffiffiffiffiffiffiffi
�1=�

p
. The results above may easily be transformed the one for oscillation amplitude

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð1� 9ZÞ=6�Z

p
ÞoAo�

ffiffiffiffiffiffiffiffiffiffiffi
�1=�

p
.

4. Conclusions

Some new and interesting dynamic behaviors for large amplitude free vibrations of a system that consists of
a mass grounded linear and nonlinear springs in series have been discovered. The analysis is based on a single
equation of motion in terms of relative displacement variable. Both cases of hardening and softening cubic
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nonlinear spring have been dealt with. The ranges of oscillations have been determined and expressions of
exact periods for symmetric and asymmetric oscillations have been established. A brief description for
constructing analytical approximate solutions has been given.
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